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Spectral lineshapes reflecting slow molecular reorientation
re calculated by a simplified numeric approach based on the
tochastic Liouville equation. The relevant reorientation pro-
ess is described by a stationary Markov operator which is,
sing a finite grid point method, represented by a matrix with
dimension equivalent to the number of orientational sites. A

ifferential equation for the time evolution of the density ma-
rix allows the development of the overall magnetization to be
alculated in consecutive time steps. For increased convenience
nd flexibility, the algorithm can be installed using commercial
preadsheet software on a regular personal computer. © 1999

cademic Press

INTRODUCTION

NMR lineshapes and their variations during relaxa
xperiments provide a rich source of information on mo
lar reorientation processes. However, it is not alw
traightforward to obtain motional parameters from spe
ata such as lineshapes and relaxation times, especia

he reorientation occurs in the slow motional regime
ariety of computation methods have been develope
rder to simulate magnetic resonance data for given

ional parameter sets (1– 6). Most procedures are based
omprehensive motional models including intramolec
eorientations as well as intermolecular and collective
esses. These motions can be accounted for either in
f correlation functions or by applying a finite grid po
pproximation. Generally, a stationary Markov operato
efined which, being part of the stochastic Liouville eq

ion, describes the motionally induced change of the
ensity matrix. Integration of the first derivative of t
ensity matrix elements in order to obtain the spec

ineshape results in a more or less complicated eigenv
roblem (5, 6). Lately, a very effective approach for t
imulation of spectra has been developed by N. J. He
7), which takes account of the motionally induced ti
ependence of Hamiltonian operators for individual sp
he evolution of the density matrix is then developed
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mall time steps by calculating successive powers
ropagator matrix. Finally, the spectral lineshape is obta
y Fourier transformation.
Similar to the alternatives mentioned above, the prop

lgorithm is based on the stochastic Liouville equation
ain advantage compared to the method described by Koet
l. (5, 6) is the fact that it avoids the solution of the eigenva
roblem and therefore does not include the sophisticated

ime-consuming step of matrix diagonalization. In contras
he procedure outlined by Heaton (7), its implementation i
implified since no powers of a given propagator matrix m
e calculated.
The algorithm proposed here again introduces finite s

n the time regime. However, in contrast to the met
utlined by Heaton, the overall magnetization is segme

nto contributions from various “sites” of common angu
rientation. Consequently, the individual Hamiltonian op
tors that enter the calculation are strictly not time de
ent (which they are in the case of Heaton’s procedure).
evelopment of each orientational contribution is then
erically calculated by introducing short time interv

omewhat equivalent to the dwell time of the actual ex
ment. The influence of molecular motion on the individ
ontributions is approximated by consecutive excha
teps representing motional kinetics. The algorithm is
cribed for an I5 1

2 system in the presence of a chem
hift anisotropy, but may easily be modified to solve o
roblems.
The resulting numerical method is therefore sim

nough to be implemented into regular spreadsheet sof
s long as the motional model is not too complicated
oes not require too many discrete steps in time and an
rientation. Alternatively, a corresponding Fortran or Pa
rogram version can be applied (Fortran 77 was used b
uthor). In any case, hardware requirements and comp

imes are on a low level. The spreadsheet version offer
dvantages of a rapid visualization of the result and a
igh variability.
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2 C. MAYER
The versatility of the described algorithm is demonstra
ased on different motional models under various simul
xperimental conditions. Results are shown for a sim

wo-site jump motion and for isotropic rotational diffusio
he selection of experimental conditions consists of a
le p/2 pulse and a Hahn echo sequence with variable p
eparation. All examples have been obtained on a re
ersonal computer with commercial spreadsheet soft
ithin less than 20 s per spectrum.

THEORETICAL CONSIDERATIONS

ime Dependence of the Spin Density Matrix

The time-dependent ensemble average magnetization o
pin system can be conveniently described by the spin de
atrix r(t) (8, 9). In the presence of a time-independent H

ltonian operator and disregarding any other source of re
tion, it develops according to

­

­t
r~t! 5 2i /\@H , r~t!#. [1]

he starting condition for such a development may be ge
ted by any pulse sequence; the effect of a simplep/2 pulse
ill be discussed in a following section. Generally, the H

ltonian H depends on the molecular orientation, marked
et of Euler anglesV n 5 (F n, Q n, C n), leading to an angula
ependence ofr andH:

­

­t
r~Vn, t! 5 2i /\@H ~Vn!, r~Vn, t!#. [2]

he term r(V n, t) represents the contribution of a giv
rientationV n to the time-dependent density matrixr(t).
e now introduce molecular reorientation by assum
Markov process whereP(V n, t) is the fraction of mole

ules with the angular orientationV n at time t (3). The
rientationV n, given by a set of three Euler angles, ref

o the orientation of the molecule and therefore of
nteraction tensor (e.g., the chemical shift anisotro
ith respect to the magnetic field. For jump motions,
uler angle setsV n mark the orientations of specific jum
ites. For diffusive motions, the reorientation is appr
ated by a finite number of angular steps in the Euler a

pheres (5, 6). In both cases, the motion is characterized
d
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differential equation involving a set of rate consta
(Vn3Vn9):

­

­t 1
P~V1, t!
P~V2, t!
P~V3, t!

· · ·
2

5 1
~2k~V13V2! 2 k~V13V3!· · ·!

k~V13V2!

k~V13V3!

· · ·

k~V23V1!

~2k~V23V1! 2 k~V23V3!· · ·!
k~V23V3!

· · ·

k~V33V1!

k~V33V2!

~2k~V33V1! 2 k~V33Q2!· · ·!
· · ·

· · ·
· · ·
· · ·
· · ·

2
3 1

P~V1, t!
P~V2, t!
P~V3, t!

· · ·
2 [3]

r

­

­t
P~t! 5 GP~t!. [4]

orrespondingly, a steady state situation is described by

­

­t 1
P~V1, t!
P~V2, t!
P~V3, t!

· · ·
2 5 0 or G1

P~V1, t!
P~V2, t!
P~V3, t!

· · ·
2 5 0. [5]

he populationsP(V n, t) in Eq. [5] may therefore b
eplaced by time-independent equilibrium populati
(V n). Examples for different motional matricesG will

ollow. Molecular reorientation represents an additio
ontribution to the time dependence of the density ma
ince any transfer of molecules from orientationV n to V n9

ithin a time intervalDt will transfer a contribution from
(V n, t) toward r(V n9, t 1 Dt). The rates of this transf
nd therefore their contribution to the time dependenc
(Vn, t) are given by the rate constants in Eq. [3]. Equat
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3LINESHAPE CALCULATIONS ON SPREADSHEET SOFTWARE
2] and [3] consequently lead to an overall time depende
f the density matrix given by (3, 8, 11)

­

­t
r~Vn, t! 5 2i /\@H ~Vn!, r~Vn, t!#

1 O
n9

{ 2k~Vn3Vn9!@r~Vn, t! 2 r eq~Vn!#

1 k~Vn93Vn!@r~Vn9, t! 2 r eq~Vn9!#%, [6]

herereq(V n) stands for the equilibrium state of the den
atrix for an orientationV n. With Eq. [6], which basically

epresents the stochastic Liouville equation, the time de
ence of the density matrix elements for all orientationsV is
ompletely described by a set of coupled differential equat

ime Dependence of the NMR Signal

Similar to the density matrix, the NMR signalM(t) observed
n the rotating frame is time dependent and represent
nsemble average of a number,N, of spins in the sample. Th
ontribution M(V n, t) from molecules situated in a giv
rientationV n at timet is related to the density matrix by (8, 9)

M~Vn, t! 5 ^Mx9~Vn, t!& 1 i ^My9~Vn, t!&

5 Ng\Tr$r~Vn, t!I 1%, [7]

hich for a two-level-system with I5 1
2 results in (9)

M~Vn, t! 5 Ng\r12~Vn, t! [8]

r

­

­t
M~Vn, t! 5 Ng\

­

­t
r12~Vn, t!. [9]

he following description will be restricted to a two-lev
ystem. Principally, the procedure may be applied to sys
ith I . 1

2 in an analogue manner.
According to Eq. [9], the time dependence for the N

ignal in the presence of molecular motion is obtained from
6] by multiplication with the factor (Ng\):

­

­t
M~Vn, t! 5 2iNg@H ~Vn!, r~Vn, t!#12 1 Ng\ O

n9

{ 2k~Vn3Vn9!@r12~Vn, t! 2 r 12
eq~Vn!#

1 k~Vn93Vn!@r12~Vn9, t! 2 r 12
eq~Vn9!#%,
e

n-

s.

he

s

q.

r, with

Ng\r12~Vn, t! 5 M~Vn, t! and r 12
eq~Vn! 5 0,

­

­t
M~Vn, t! 5 2iNg@H ~Vn!, r~Vn, t!#12 1 O

n9

{ 2k~Vn3Vn9!@M~Vn, t!#

1 k~Vn93Vn!@M~Vn9, t!#%. [10]

The conditionr12
eq(V n) 5 0 is justified since all off-diagon

lements of the spin density matrix vanish in the equilibr
tate (9).
If we consider a finite step in timeDt, the overall evolution

f the signal contributionDM(V n, t) in the course ofDt is
iven by the integral of Eq. [10]. In order to numerically so

his integral, an assumption has to be made which is only
or small time intervalsDt. The processes that occur within
ime interval Dt are now approximated by two separ
events”:

(1) In the course of the time interval betweent andt 1 Dt,
otional exchange is completely absent. Therefore, all

onstantsk are zero and Eq. [10] reduces to

­

­t
M~Vn, t! 5 2iNg@H ~Vn!, r~Vn, t!#12, [11]

hich has the general solution represented by a precess
he rotating frame (9)

M~Vn, t! 5 M~Vn, 0!exp@iv~Vn!t#, [12]

herev(V n) is the orientation-dependent offset to the Larm
requency. The magnetizationM(V n, t 1 Dt)9 after this firs
vent therefore becomes

M~Vn, t 1 Dt!9 5 M~Vn, t!exp@iv~Vn!Dt#. [13]

(2) At the end of the time interval (att 1 Dt), a discon
inuous jump motion is assumed, with the jump rate repre
ng the effect of the diffusive motion in the course ofDt. This
ccurs instantaneously, therefore no precession of the m

ization will be observed during this event. Consequently,
10] simplifies to

­

­t
M~Vn, t! 5 O

n9

{ 2k~Vn3Vn9!@M~Vn, t!#

1 k~Vn93Vn!@M~Vn9, t!#%. [14]
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4 C. MAYER
he variation ofM(V n, t 1 Dt)9 due to this jump motion i
hen given by

~Vn, t 1 Dt! 5 M~Vn, t 1 Dt!9 1 O
n9

{ 2k~Vn3Vn9!Dt@M~Vn, t 1 Dt!9#

1 k~Vn93Vn!Dt@M~Vn9, t 1 Dt!9#%. [15]

From now on, a diffusive reorientation of the molecule
pproximated by a series of consecutive jump motions. Th

ore, it becomes very important to keepDt sufficiently short in
rder to avoid artifacts. AlthoughDt represents an equivale

o the experimental dwell time, it may have to be chosen m
maller in order to correctly describe the effect of the mot
n any case, the result of the calculation should be verifie
hecking the convergence of the lineshapes with decre
ength of the time intervalDt.

With this approximation, the overall variation of all mag
ization contributions is obtained by combining Eqs. [13]
15]:

~Vn, t 1 Dt! 5 M~Vn, t!exp@iv~Vn!Dt# 1 O
n9

{ 2k~Vn3Vn9!DtM~Vn, t!exp@iv~Vn!Dt#

1 k~Vn93Vn!DtM~Vn9, t!exp@iv~Vn9!Dt#%.

[16]

ased on this equation and a given starting conditionM(V n,
), it is now straightforward to numerically calculate tim
ependent signal contributions for each angular siteV n. Each
ingle valueM(V n, t 1 Dt) is computed fromM(V n, t) and
set of valuesM(V n9, t) for variousV n9, depending on th

haracteristics of the motion. In the spreadsheet implem
ion of the algorithm,M(V n, t) is split into real and imaginar
ontributions which are developed in columns along a g
ime axist with a step widthDt:

0
Dt

2Dt
3Dt
· · ·
t

M~V1, 0! real

M~V1, Dt! real

M~V1, 2Dt! real

M~V1, 3Dt! real

· · ·
M~V1, t! real

M~V2, 0! real

M~V2, Dt! real

M~V2, 2Dt! real

M~V2, 3Dt! real

· · ·
M~V2, t! real

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

3

M~V1, 0! imag

M~V1, Dt! imag

M~V1, 2Dt! imag

M~V1, 3Dt! imag

· · ·
M~V1, t! imag

M~V2, 0! imag

M~V2, Dt! imag

M~V2, 2Dt! imag

M~V2, 3Dt! imag

· · ·
M~V2, t! imag

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

.

e-

h
.
y
ng

d

ta-

n

The overall signal amplitudesM tot(t), actually correspond
ng to single points in a free induction decay, are easily for
ccording to

M tot~t! 5 O
n

M~Vn, t!. [17]

he number of actual values forM(V n, t) created in a com
lete lineshape calculation is given by the amount of disc
rientations multiplied by the number of time intervals. T
omputer storage requirements therefore grow conside
ith the complexity of the motional model if all values a
aved. However, for computation of an overall signalM tot(t 1
t), it is only necessary to have a complete set ofM(V n, t 1
t) andM(V n, t) available; all other values can be overw

en. This is easily done in a Fortran or Pascal version o
lgorithm, which allows us to calculate, for example, a p

em with 25,000 time intervals and 100,000 discrete orie
ions on a personal computer. The corresponding spread
etup preserves all values and therefore is limited to 2000
teps and 99 orientational sites, equivalent to a data volum
8 MB. On the other hand, it offers significant advantage

erms of versatility and convenience. It includes a sim
ourier transform routine creating a frequency spectrumf(v)

rom the overall FIDM tot(t) according to

f~v! 5 E
2`

`

M~t!exp~ivt!dt. [18]

he spectrum, normalized to a standard area, is displayed
o the FID within approximately 5 s after signal computatio
n additional speedup may be realized by applying a
ourier transform algorithm.

tarting Condition and the Effect of Pulses

As mentioned in the previous section, the iterative com
ation of the signal contributionsM(V n, t) is initiated by a
iven starting valueM(V n, 0). Assuming that a single R
ulse is applied to the system, this starting condition dep
n frequency, phase, and duration of the first pulse. The

owing FID is calculated according to Eqs. [16] and [17].
ny point of time during the simulated evolution of the FID

s possible to reproduce the effect of additional pulses
orresponding variation of the signal contributionsM(V n, t).
In general, the consequence of the pulse at timet is calcu-

ated from the density matrix before the pulse by a corresp
ng unitary transformation,

r~t 1 Dt! 5 D~w, q, 2w!r~t 2 Dt! D* 21~w, q, 2w!,

[19]
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hereD is a Wigner rotation matrix with the Hermitian adjo
* 21, w is the phase of the pulse, andq is its rotation angl

6). In this approximation, the pulse is assumed to be o
nfinitesimally short length.

Generally, this procedure must be introduced at the be
ing of the simulation, starting with the density matrix

hermal equilibrium, and at each point of the FID calcula
here additional pulses occur. In many relevant cases,

FIG. 1. Calculated free induction decays (left column) and correspond

j between 2 and 50 ms. Real parts of the free induction decays (black l
ntensity. All spectra are normalized to a standard overall area. The sim
wo sitesV1 andV2 with corresponding Larmor frequenciesv(V1) 5 v0 2 1
(V 2) 5 0.4. More simulation parameters are given in the text.
n

n-

is

ery straightforward to estimate the consequence of a p
his may be shown by a simple example: If ap/2 pulse o

nfinitesimally short length and phase2y acts on a system
hermal equilibrium, the result, detected in phasex, is given by
he steady state population inV n according to

M~Vn, 0!}P~Vn!. [20]

spectral lineshapes (right column) for a two-site jump motion with correlames
) are normalized to a starting intensity of 1; imaginary parts (gray lines)t at zero

ted experimental condition is ap/2 pulse in the presence of a jump motion betw
/s andv(V2) 5 v0 1 100 1/s and equilibrium populationsP(V 1) 5 0.6 and
ing
ines
ula
00 1
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6 C. MAYER
Consequently, all signal contributions start with a real v
t time zero. An additionalp pulse of phasex after a time
eriodt leads to an inversion of the imaginary part ofM(V n,
). Such a combination would result, in nature as well as in
orresponding computation, in the well-known formation
ahn echo.
It must be mentioned that with the simple procedure

cribed above, the description of RF pulses is restricte
ulses which create magnetization in thexy plane only. There

ore, it is limited to an initialp/2 pulse followed by one o
orep pulses. For all other conditions, it would be neces

o develop the complete density matrix instead of only
lementr12, which is principally doable but would significan
omplicate the problem.

REPRESENTATIVE RESULTS

wo-Site Jump Motion

The simplest case of a molecular reorientation proces
uencing spectral lineshape is a jump motion between
rientationsV1 and V2. Its effect depends on the differen
etween two corresponding Hamiltonians,H(V1) andH(V2),
nd Larmor frequencies,v(V1) and v(V2). The rate of the
otion is characterized by an average residence timet j , the
quilibrium populations of site 1 and 2 byP(V 1) andP(V 1),
espectively. In this simple case, the relevant Markov ope
s represented by a matrix with four elementsknm. It must fulfill
he requirement of Eq. [4],

S 2k~V13V2!

k~V13V2!

k~V23V1!

2k~V23V1!
DS P~V1!

P~V2!
D 5 0. [21]

With t j as the average residence time, the matrix elemen
are given by

k~V23V1! 5 P~V1!/t j [22a]

k~V13V2! 5 P~V2!/t j. [22b]

ased on these data, the development of the FID signal c
alculated using Eqs. [16] and [17], if the starting conditi
re defined. Figure 1 shows a representative set of calcu
IDs (only an initial section of each FID is shown) and spe
esulting from ap/2-pulse experiment. The average reside
ime t j is varied between 50 and 2 ms while the equilibr
opulations are given byP(V 1) 5 0.6 andP(V 2) 5 0.4.
hese parameters given, Eqs. [22a] and [22b] allow the c

ation of the rate constantsk(V23V1 ) andk(V13V2 ). The two jump
ites,V1 andV2, are assigned to two different Larmor frequ
ies,v(V1) 5 v0 2 100 1/s andv(V2) 5 v0 1 100 1/s. The
ime axis is segmented into 2000 time intervalsDt of 0.5 ms
uration. With these data and the initial condition defined
e

e

-
to

y
s

n-
o

or

of

be
s
ted
a
e

u-

-

y

q. [20], FIDs and spectra shown in Fig. 1 were obta
ithin 5 s on aspreadsheet. The spin–spin relaxation time
ach data set corresponds to the observable length of the

n the case shown, a minimum is observed neart j 5 5 ms
hich corresponds to 1/Dv.

sotropic and Anisotropic Rotational Diffusion

A rotational diffusion in a three-dimensional space is c
cterized by time-dependent Euler anglesF, Q, andC describ-

ng the transformation from the diffusion tensor system to
aboratory system (Fig. 2). Due to the symmetry of the ex
mental setup, the Hamiltonian operator is invariant againsC,
o this angle is not taken into account in the further evalua
In the grid point approximation, the complete sphere

ossible Euler angles is then segmented into a finite numb
ites,V n, defined byF i andQ k, such that every indexn now
orresponds to one set of indicesk and i . The equilibrium
opulation of the siteV n 5 V ik 5 (F i , Q k) is given byPik.
he Euler anglesF i andQ k are chosen according to

0 # F i # 2p [23a]

0 # Qk # p, [23b]

ith

i 5 1, 2, . . . ,NF and k 5 1, 2, . . . ,NQ,

n such a way that angular stepsDF andDQ between neigh
oring sites are always identical. The matrix for the co
ponding Markov process has an overall dimension depe
n the site numbersNF andNQ. Based on the idea of rotation
iffusion (13, 14), their elementskii 9kk 5 k(Fi3Fi 9) andkiikk9 5

(Qk3Qk9) must fulfill the equations (5, 6, 11)

ki ~i11!kk 1 ki ~i21!kk 5 NF
2 /~12p 2t \! [24a]

ki ~i11!kkPik 5 k~i11!ikkP~i11!k [24b]

FIG. 2. Notation for coordinate systems and Euler angles required
escription of a rotational diffusion.
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7LINESHAPE CALCULATIONS ON SPREADSHEET SOFTWARE
nd

kiik ~k11! 1 kiik ~k21! 5 NQ
2 /~3p 2t'! [25a]

kiik ~k11!Pik 5 kii ~k11!kPi ~k11!. [25b]

The diagonal elements of the matrix are derived from
equirements of a stationary process given by Eq. [4]:

kiikk 5 2ki ~i11!kk 2 ki ~i21!kk 2 kiik ~k11! 2 kiik ~k21!. [26]

FIG. 3. Calculated free induction decays (left column) and correspond
imest 5 t' 5 t\ between 10 and 200ms. Real parts of the free induction de
tart at zero intensity. All spectra are normalized to a standard overall area.

s assumed to be a chemical shift anisotropy with tensor elementsS11/S22/S33 5 2
e

ll other matrix elements, except fork(NF)1 kk and k1(NF) kk,
hich characterize the transfer between the first and the
ites in F according to Eqs. [24a] and [24b], are zero. T
orrelation timest\ and t' describe the reorientation arou
xes parallel or vertical to the symmetry axis of the diffus

ensor, respectively (6, 13, 14). The anisotropy of the motio
epends on the ratio of both values. For an isotropic motiot\

ndt' are identical.
Without an orienting potential, the equilibrium populat

spectral lineshapes (right column) for an isotropic rotational diffusion withrrelation
s (black lines) are normalized to a starting intensity of 1; imaginary parts (g
e simulated experimental condition is represented by an initialp/2 pulse. The interactio
z/8 kHz/210 kHz; more details are given in the text.
ing
cay
Th
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ik of any siteV n 5 (F i , Q k) with the Euler angleQ k is given
y

Pik 5
sin Qk

NF O
k951

NQ

sin Qk9

. [27]

FIG. 4. Calculated free induction decays (left column) and corresp
orrelation timest 5 t' 5 t\ between 0.5 and 10ms. Real parts of the free
arts (gray lines) start and remain at zero intensity. All spectra are norm
y an initial p/2 pulse. The interaction is assumed to be a quadrupolar c
ther parameters are identical to those for Fig. 3.
n the presence of an orienting potential of any kind, Eq.
ust be replaced by a suitable orientational distribution f

ion (6).
Finally, the Hamiltonian operatorsH ik corresponding to a

ites inF andQ must be calculated by two coordinate tra
ormations according to Fig. 2 (6): First, the HamiltonianHM

s transformed from the magnetic tensor system (wher

ding spectral lineshapes (right column) for an isotropic rotational diffu
uction decays (black lines) are normalized to a starting intensity of 1; im
zed to a standard overall area. The simulated experimental condition isrepresente
ling represented by tensor elementsQ11/Q22/Q33 5 100 kHz/150 kHz/2250 kHz;
on
ind
ali

oup
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ff-diagonal matrix elements are zero) to the molecular d
ion tensor system using a set of fixed Euler angles (w, q, c),
hich basically describes the orientation of the interac

ensor with respect to the rotation axis of the molecule. Su
ransformation is represented by an Euler rotation matrixT(w,
, c) according to

H D 5 T~w, q, c!H MT21~w, q, c!. [28]

second transformation, based on the Euler anglesF i andQ k,
hich describe the orientation of molecules in a siteV ik with

espect to the magnetic field, leads from the diffusion te
ystem to the laboratory system (Fig. 2):

Hik 5 T~F i, Qk, 0!H DT21~F i, Qk, 0!. [29]

n the case of an isotropic motion, a defined rotation axis o
olecule does not exist and the result becomes indepe

rom w, q, andc (which therefore may be set to zero, as
een done for the following examples).
Figure 3 shows FIDs (left column: real part, black; ima

ary part, gray) and spectra (right column) resulting from
escribed algorithm. Again, they correspond to a simplep/2-
ulse experiment. In these cases,t' is identical tot\, charac

erizing the motion as an isotropic rotational diffusion. T
requenciesv(V ik) are derived from a chemical shift anis
opy tensorSM with tensor elementsS11/S22/S33 5 2 kHz/8
Hz/210 kHz by the transformation described above (witw

q 5 c 5 0). With NF 5 9 andNQ 5 11, the diffusive

FIG. 5. Effect of an additionalp pulse on the development of a chara
n the case shown, thep pulse after a waiting periodD inverts the imagina
emains unaffected. This leads to the formation of a Hahn echo signal aft
iffusion of the tensor given in Fig. 3.
-

n
a

or

e
ent
s

-
e

otion is approximated by a set of 99 discrete orientati
he correlation timet 5 t\ 5 t' is varied between 10 and 2
s. The FIDs are simulated over 2000 time intervals of 0.6ms
uration; their initial section is shown in Fig. 3. Together w
corresponding spectrum, each FID is obtained within 15
personal computer.
Figure 4 refers to spectral results from a quadrupolar i

ction tensor as in the case of a2H NMR experiment. Th
orresponding quadrupolar coupling tensor is represente
ensor elementsQ11/Q22/Q33 5 100 kHz/150 kHz/2250 kHz.
he correlation timet 5 t' 5 t\ for the isotropic diffusive
otion is varied between 0.5 and 10ms and again approx
ated by 99 discrete orientations. Initial sections of the F
hich have been developed in 2000 steps of 15 ns, are s

n Fig. 4 together with corresponding spectra.
In Fig. 5, the effect of an additionalp pulse after a waitin

eriod D is shown (bottom) in comparison to the original F
top). A very slow motion (t 5 t' 5 t\ 5 100 ms) is assumed
uppress the effect of the reorientation for this example.
xperiment again starts with an initialp/2 pulse. After a duratio
, the imaginary part of the NMR signal (gray line) is inverted
p pulse which is phase shifted by 90° with respect to thep/2
ulse. The consequence of this event is the formation of a
cho after another time periodD (t 5 0.2 ms in Fig. 5, bottom
xcept for its intensity, the following part of the FID is alm

dentical to the initial part after thep/2 pulse.
Examples for FIDs and lineshapes resulting from a s

ated Hahn echo sequence in the presence of motion ar
ented in Fig. 6. All parameters, except for the presence o

istic NMR signal (bottom) compared with the original free induction dec
art of the free induction decay (bottom, gray line) while the real part in
nother waiting periodD. The example shown refers to a slow (t 5 100 ms) rotationa
cter
ry p
er a
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10 C. MAYER
econd pulse, are identical to those for Fig. 3 at 200ms. The
elay between the two pulses is varied from 50 to 200ms. The
cho FID, beginning with the position of the theoretical e
aximum (att 5 2D), is submitted to Fourier transformati
ccording to Eq. [18]. The dependence of the echo s

ntensity (and the area of the corresponding spectrum) o
ulse spacing reflects the spin–spin relaxation timeT2E (6).
Parameters such as site numbers, length of the time int

r the overall number of time intervals must be chosen acc
ng to the given conditions. Generally, rapid diffusive moti

FIG. 6. Calculated free induction decays (left column) and corres
xperiment with pulse separationsD varying between 50 and 200ms. Linesh
ependence of the echo signal intensity (and the area of the correspon
o

al
he

al,
d-

equire fewer sites than slow ones. In the case of a diffu
otion, the length of the time intervalDt should be, as a ru
f thumb, at least an order of magnitude smaller than
orrelation time of the motion. In the case of extremely ra
eorientations with correlation times near 1/v0, it is advisable
o apply the Redfield approximation based on the desc
otional model (15). Finally, the overall number of sites in t

ime regime should be sufficient to describe the complete d
f the signal, otherwise artifacts like “wiggles” are observe

he spectral lineshape. In careful studies, all results shou

ding spectral lineshapes (right column) resulting from a simulated H
s are obtained by Fourier transformation of the FIDs starting att 5 2D. The

g spectrum) on the pulse spacing reflects the spin–spin relaxation timeT2E.
pon
ape
din
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11LINESHAPE CALCULATIONS ON SPREADSHEET SOFTWARE
hecked for convergence with increasing site numbers in
nd angular orientations.
The finite grid point approximation further allows us

ombine rotational diffusion with a jump motion, as is p
osed in detail by Kotheet al. (6). An extension of th

echnique to a description of experiments under sample
ing conditions is in preparation.
Standard spreadsheet implementations in Microsoft E
ill be transferred by E-mail upon request.

CONCLUSION

In comparison to methods described earlier, the proce
utlined here offers a significantly simplified numeric appro

o simulate spectral lineshapes. Despite some limitations d
he additional finite grid point approximation in the time
ime, it allows us to approach a very large variety of motio
nd experimental conditions. In addition, its low-level softw
nd hardware requirements make it suitable for almost
iven computer equipment.
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