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Spectral lineshapes reflecting slow molecular reorientation
are calculated by a simplified numeric approach based on the
stochastic Liouville equation. The relevant reorientation pro-
cess is described by a stationary Markov operator which is,
using a finite grid point method, represented by a matrix with
a dimension equivalent to the number of orientational sites. A
differential equation for the time evolution of the density ma-
trix allows the development of the overall magnetization to be
calculated in consecutive time steps. For increased convenience
and flexibility, the algorithm can be installed using commercial

small time steps by calculating successive powers of
propagator matrix. Finally, the spectral lineshape is obtaine
by Fourier transformation.

Similar to the alternatives mentioned above, the propose
algorithm is based on the stochastic Liouville equation. It
main advantage compared to the method described by Kabthe
al. (5, 6) is the fact that it avoids the solution of the eigenvalue
problem and therefore does not include the sophisticated a
time-consuming step of matrix diagonalization. In contrast t

spreadsheet software on a regular personal computer.
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© 1999 the procedure outlined by Heatoi) its implementation is

simplified since no powers of a given propagator matrix mus
be calculated.

The algorithm proposed here again introduces finite stej
in the time regime. However, in contrast to the metho

outlined by Heaton, the overall magnetization is segmente

NMR lineshapes and their variations during relaxanomto contributions from various “sites” of common angular

experiments provide a rich source of information on mOIe%’rientation. Consequently, the individual Hamiltonian oper

ular. reorientation Processes. However, it Is not alwaya ors that enter the calculation are strictly not time deper
straightforward to obtain motional parameters from spectrg

. ) ) . ent (which they are in the case of Heaton’s procedure). T¥
data such as lineshapes and relaxation times, especiall i ( y b )

. . ) . . ﬁevelopment of each orientational contribution is then nu
the reorientation occurs in the slow motional regime. . . . ) .
merically calculated by introducing short time intervals

variety of computation methods have been developed in . ;
order to simulate magnetic resonance data for given m%c_)mewhat equivalent to the dwell time of the actual expel
tional parameter setsl£6). Most procedures are based Or'Hment. The influence of molecular motion on the individual
comprehensive motional models including intramolecuIgrom”tJUtlons IS appro>_<|mateq bY consecuuve_ exchang
reorientations as well as intermolecular and collective pr§i€PS representing motional kinetics. The algorithm is de

. e . :
cesses. These motions can be accounted for either in teﬁﬁgbed_for an I= 5 system |n. the presenf:e of a chemical
of correlation functions or by applying a finite grid poin$Snift anisotropy, but may easily be modified to solve othe

approximation. Generally, a stationary Markov operator Rroblems.

defined which, being part of the stochastic Liouville equa- The resulting numerical method is therefore simple
tion, describes the motionally induced change of the sp@fough to be implemented into regular spreadsheet softwe
density matrix. Integration of the first derivative of theds long as the motional model is not too complicated an
density matrix elements in order to obtain the spectrépes notrequire too many discrete steps in time and angul
lineshape results in a more or less complicated eigenvaf@gentation. Alternatively, a corresponding Fortran or Pasc:
problem 6, 6). Lately, a very effective approach for theprogram version can be applied (Fortran 77 was used by tl
simulation of spectra has been developed by N. J. Heatauthor). In any case, hardware requirements and computi
(7), which takes account of the motionally induced timémes are on a low level. The spreadsheet version offers tl
dependence of Hamiltonian operators for individual spinadvantages of a rapid visualization of the result and a vel
The evolution of the density matrix is then developed ihigh variability.

:
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The versatility of the described algorithm is demonstrated differential equation involving a set of rate constant:

based on different motional models under various simulat&gn_.on):

experimental conditions. Results are shown for a simple
two-site jump motion and for isotropic rotational diffusion.

P(Q,,t
The selection of experimental conditions consists of a sim- PEQ; t;
ple /2 pulse and a Hahn echo sequence with variable pulse ’

separation. All examples have been obtained on a regular
personal computer with commercial spreadsheet software
within less than 20 s per spectrum.

P(QS! t)

(_k(Qlﬁﬂz) - k(Ql‘)Q:i)- ’ )

k(fh—)Qz)
K@u—00
THEORETICAL CONSIDERATIONS R
Time Dependence of the Spin Density Matrix K0y

(_k((lzﬁill) - k({)g%ﬂg). ' )

The time-dependent ensemble average magnetization of any K04
spin system can be conveniently described by the spin density cee
matrix p(t) (8, 9). In the presence of a time-independent Ham-
iltonian operator and disregarding any other source of relax- Kas—ay
ation, it develops according to Kis02

(_k(ﬂaﬁ&h) - k(!laﬁQz)' )

dJ
51 PO = —i/A[H, p(D]. [1] P(Qy, t)
P(QZ! t)
“| P@a 1) 3]
The starting condition for such a development may be gener-
ated by any pulse sequence; the effect of a simgle pulse
will be discussed in a following section. Generally, the Hanf"
iltonian H depends on the molecular orientation, marked by a
set of Euler angle§), = (®,, ®,, V), leading to an angular F
dependence o andH: 51 PO =TPQ). [4]
9 Correspondingly, a steady state situation is described by
a P(Qm t) = _I/ﬁ[H(Qn)! P(Qm t)] [2]
P(Qll t) P(Qll t)
d P(QZI t) P(QZ t)

The termp(€,, t) represents the contribution of a given  at| P(Qst) |~ 0 or T} pa,t |=0 Bl
orientation(), to the time-dependent density matrixt). T T

We now introduce molecular reorientation by assuming

a Markov process wherB(Q,, t) is the fraction of mole- The populationsP(€,, t) in Eq. [5] may therefore be
cules with the angular orientatiof2, at timet (3). The replaced by time-independent equilibrium population:
orientation{},, given by a set of three Euler angles, referp(Q,). Examples for different motional matrices will

to the orientation of the molecule and therefore of thllow. Molecular reorientation represents an additiona
interaction tensor (e.g., the chemical shift anisotropyjontribution to the time dependence of the density matrix
with respect to the magnetic field. For jump motions, thsince any transfer of molecules from orientatiQn to Q,,
Euler angle set$), mark the orientations of specific jumpwithin a time intervalAt will transfer a contribution from
sites. For diffusive motions, the reorientation is approxp({,, t) towardp(Q,, t + At). The rates of this transfer
mated by a finite number of angular steps in the Euler angded therefore their contribution to the time dependence «
spheres§, 6). In both cases, the motion is characterized by((},, t) are given by the rate constants in Eq. [3]. Equation
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[2] and [3] consequently lead to an overall time dependenoe, with
of the density matrix given by3( 8, 1]

NyhplZ(an t) = M(Qm t) and pig(Qn) = 01

d .
gt Pl O = ZUHRE. p(@0 0] SMQ 1) = —INYTH(Q), p(@ D]z + S

n

+ D {—Kayamlp(Qn 1) — peAQ,)]
n { =Ko [M(Q,, 1)]

+ k(Qnr—mn)[P(Qn’a t) — Peu(Qn')]}i [6] + k(nnrann)[M(Qn'a t)]} [10]

where p*((2,) stands for the equilibrium state of the density The conditionp$3(Q,) = 0 is justified since all off-diagonal
matrix for an orientation(2,,. With Eq. [6], which basically elements of the spin density matrix vanish in the equilibriun
represents the stochastic Liouville equation, the time depenate 0).
dence of the density matrix elements for all orientatiéhss If we consider a finite step in timat, the overall evolution
completely described by a set of coupled differential equationsf. the signal contributiomM({2,, t) in the course ofAt is
given by the integral of Eq. [10]. In order to numerically solve
Time Dependence of the NMR Signal this integral, an assumption has to be made which is only val
for small time intervald\t. The processes that occur within the
ir%e interval At are now approximated by two separate
ents”

Similar to the density matrix, the NMR signisl(t) observed
in the rotating frame is time dependent and represents t
ensemble average of a numbMr, of spins in the sample. The
contribution M(£2,, t) from molecules situated in a given (1) In the course of the time interval betweandt + At,
orientation(), at timet is related to the density matrix b§,(9 motional exchange is completely absent. Therefore, all ra
constantk are zero and Eq. [10] reduces to

M(‘Qna t) = <Mx’(‘Qna t)> + i<My’(‘Qna t)>
= NyiTr{p(Q,, )17}, [7] %M(Qn, t) = —iNY[H(Q), p(Qq, ]2 [11]

which for a two-level-system with + 3 results in . . .
4 2 0 which has the general solution represented by a precession

the rotating frame9)

M(€Qp, t) = Nyfipi(Qy, 1) (8]
M(Qp, 1) = M(Q,, O)exdio(Q)t], [12]
or
wherew({,) is the orientation-dependent offset to the Larmol

aJ B a9 frequency. The magnetizatidvi(Q),, t + At)’ after this first

ot M(€, ©) = NyA ot P12 Qo V). ] event therefore becomes
The following description will be restricted to a two-level M(Q,, t + At)’ = M(Q,, H)exdiw(Q,)At]. [13]
system. Principally, the procedure may be applied to systems ) ] )
with | > }in an analogue manner. (2) At the end of the time interval (a@t+ At), a discon-

According to Eqg. [9], the time dependence for the NMHinuous jump motion is assumed, with the jump rate represer

signal in the presence of molecular motion is obtained from E}9 the effect of the diffusive motion in the course/of. This
[6] by multiplication with the factor Ky#): occurs instantaneously, therefore no precession of the mag

tization will be observed during this event. Consequently, Ec
5 [10] simplifies to
ST M, 1) = —INYIH(Qy), p(Qy D]z + Nyh 2,

n

0
[ K [p1a( Qs ) — pSQ)] at M(n 0 = Z{ Ko (M0 O]

+ Kap—anlp12(Qn, 1) — piHQ,) 1, + Kay—an[M(Qy, D]} [14]
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The variation ofM(Q),, t + At)" due to this jump motion is  The overall signal amplitudeM .(t), actually correspond-
then given by ing to single points in a free induction decay, are easily forme
according to

M(Q,, t + At) = M(Q,, t + At)’ + >
n M) = 2 M(Q,, 1). [17]
{ K0 AtIM(Q,, t + A1)'] "

+ Kay—anAtIM(Q,, t + At)']}. [15]  The number of actual values fdf(Q,, t) created in a com-
plete lineshape calculation is given by the amount of discre
From now on, a diffusive reorientation of the molecule igrientations multiplied by the number of time intervals. The
approximated by a series of consecutive jump motions. Theggmputer storage requirements therefore grow considerak
fore, it becomes very important to kedp sufficiently short in  with the complexity of the motional model if all values are
order to avoid artifacts. Althought represents an equivalentsaved. However, for computation of an overall sighal(t +
to the experimental dwell time, it may have to be chosen muét), it is only necessary to have a complete seMgfl,, t +
smaller in order to correctly describe the effect of the motiot) andM(£},, t) available; all other values can be overwrit-
In any case, the result of the calculation should be verified k§n. This is easily done in a Fortran or Pascal version of th
checking the convergence of the lineshapes with decreas@lgorithm, which allows us to calculate, for example, a prob
length of the time intervalt. lem with 25,000 time intervals and 100,000 discrete oriente
With this approximation, the overall variation of all magnetions on a personal computer. The corresponding spreadsh
tization contributions is obtained by combining Egs. [13] angetup preserves all values and therefore is limited to 2000 tin

[15]: steps and 99 orientational sites, equivalent to a data volume
18 MB. On the other hand, it offers significant advantages i
M(Q, t + At) = M(Q,, Dexdio(Q)AL] + D terms of versatility and convenience. It includes a simpl

Fourier transform routine creating a frequency spectf(4)
from the overall FIDM (t) according to

{ K0 AtM(Q,, Y exdiw(Q,)At]
Ky oy AM(Qy, Dexdio(Qy)At]).

f(w) = f ’ M (t)expli ot)dt. [18]
[16] .

Based on this equation and a given starting condit(s),, The spectrum, normalized to a standard area, is displayed ne

0), it is now straightforward to numerically calculate timeg, ye Fip within approximatgl5 s after signal computation.
dependent signal contributions for each angular@iteEach 5, additional speedup may be realized by applying a fa:
single valueM(Q,, t + At) is computed fromM(€},, t) and Fourier transform algorithm.

a set of valuesM(Q,, t) for various(},, depending on the

qharactenstlcs Qf the motlon._ In th_e_spreadsheet_ mpl_emen@arting Condition and the Effect of Pulses

tion of the algorithmM(Q,, t) is split into real and imaginary _ _ _ _ _ _
contributions which are developed in columns along a givenAs mentioned in the previous section, the iterative compt

time axist with a step widthAt: tation of the signal contributionM((},, t) is initiated by a
given starting valueM(Q,, 0). Assuming that a single RF
0 M(Qy, 0)en M(Qy 0)ey - - - pulse is applied to the system, thIS startmg_condltlon depent
At M(Qp, Ay M(Qy Ab) ey - - - on frequenc_y, phase, and durat_|on of the first pulse. The fc
AL M(Qy, 200 0y M(Qy 2A0) .0 - - - Iowmg_FID is calcule_lted accqrdmg to Egs. [_16] and [17]. At
3At M(Qy, 3A0) 0 M(Qy 3Ab) .0 - - - any p0|_nt of time during the simulated evoIL_Jt_|on of the FID, it
o o L o is possible to reproduce the effect of additional pulses by
t M(Qy, 1) en M(Qp, ) e L corresponding variation of the signal contrlbut|d_vl_$Qn, t).
In general, the consequence of the pulse at tirngecalcu-
M(Q1, 0)imag M(Q2 Oimag  ** - lated from the density matrix before the pulse by a correspon:
M(Q1, Ainag M(Q2, A)imag - -+ ing unitary transformation,

M(Qla 2At)ime\g M(sz; 2At)imag

M€, 380)ineg - M( D2 3ADimag p(t+ A1) = D(g, 9, —@)p(t — ADD* X(p, 9, —¢),

M(Qll 1':)imag M(in J;)imag [19]
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7j = 50 ms

0 50 100 150 200 t(ms)| -0,30 0,15 0,00 015 o (kHz)

17j=20ms

] 50 100 150 200 t(ms)| -0,30 0,15 0,00 0,15 o (kHz)

Tj =10 ms

0 50 100 150 200 t(ms)

Tj=5ms
05 } + + t ;
0 50 100 150 200 t(ms)| -0,30 0,15 0,00 0,15 o (kHz)
Ti=2ms 20
16 +
12 +
8
0,5 4 + +

0 50 100 150 200 t(ms)| -0,30 -0,15 0,00 0,15 o (kHz)

FIG. 1. Calculated free induction decays (left column) and corresponding spectral lineshapes (right column) for a two-site jump motion with carretatior
7; between 2 and 50 ms. Real parts of the free induction decays (black lines) are normalized to a starting intensity of 1; imaginary parts (gréyelizesp sta
intensity. All spectra are normalized to a standard overall area. The simulated experimental conditié® mikse in the presence of a jump motion between
two sites(); and (), with corresponding Larmor frequencieg();) = w, — 100 1/s andv({),) = w, + 100 1/s and equilibrium populatiof(2,) = 0.6 and
P(Q,) = 0.4. More simulation parameters are given in the text.

whereD is a Wigner rotation matrix with the Hermitian adjointvery straightforward to estimate the consequence of a puls

D* !, ¢ is the phase of the pulse, ardis its rotation angle This may be shown by a simple example: If7@2 pulse of

(6). In this approximation, the pulse is assumed to be of amfinitesimally short length and phasey acts on a system in

infinitesimally short length. thermal equilibrium, the result, detected in phases given by
Generally, this procedure must be introduced at the begihe steady state population {&, according to

ning of the simulation, starting with the density matrix for

thermal equilibrium, and at each point of the FID calculation

where additional pulses occur. In many relevant cases, it is M(Q,, 0)xP(Q,). [20]
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Consequently, all signal contributions start with a real value magnetic tensor system: HM
at time zero. An additionadr pulse of phase< after a time
period r leads to an inversion of the imaginary partM{Q,, i (0, 9, v)
t). Such a combination would result, in nature as well as in the

corresponding computation, in the well-known formation of a

Hahn echo. diffusion tensor system: HP
It must be mentioned that with the simple procedure de- (@, ©,, 0)
scribed above, the description of RF pulses is restricted to b Mo

pulses which create magnetization in theplane only. There-

fore, it is limited to an initialw/2 pulse followed by one or laboratory system: H,

more 7 pulses. For all other conditions, it would be necessary _ _ _

to develop the complete density matrix instead of only it(? FIQ. 2 Notation 1_‘or coo_rdlngte systems and Euler angles required for
L L L escription of a rotational diffusion.

elementpy,, which is principally doable but would significantly

complicate the problem.

Eqg. [20], FIDs and spectra shown in Fig. 1 were obtaine

within 5 s on aspreadsheet. The spin—spin relaxation time fo

each data set corresponds to the observable length of the F

in the case shown, a minimum is observed ngar 5 ms
The simplest case of a molecular reorientation process imhich corresponds to A.

fluencing spectral lineshape is a jump motion between two

orientations(), and Q,. Its effect depends on the differencdsotropic and Anisotropic Rotational Diffusion

between two corresponding Hamiltoniam$((2,) and H((,),

and Larmor frequenciesyp((2;) and ({),). The rate of the

mot!(_)n s characterlzed by an average residence timene ing the transformation from the diffusion tensor system to th
equnlbrl_um populz_itlons of site 1 and 2 B({2,) andP(2.), laboratory system (Fig. 2). Due to the symmetry of the expe
_respectlvely. In this S|mple case, the relevant Markov Operatiﬂ’iental setup, the Hamiltonian operator is invariant agalnst
IS repres_ented by a matrix with four elemekifs. It must fulfil so this angle is not taken into account in the further evaluatiol
the requirement of Eq. [4], In the grid point approximation, the complete sphere o
possible Euler angles is then segmented into a finite number
( Km0y Koy )( P(Q,) ) _ 0 11 Sites,, defined byd; and®,, such that every indes now
Koison  Kiaaoay P(Qy) ) ™ [21] corresponds to one set of indicksandi. The equilibrium
population of the sit€), = Q, = (®;, ©,) is given byP,,.
With 7; as the average residence time, the matrix elementsidfe Euler anglesb; and®, are chosen according to
I" are given by

REPRESENTATIVE RESULTS

Two-Site Jump Motion

A rotational diffusion in a three-dimensional space is char
acterized by time-dependent Euler anglesd, and¥ describ-

=o, =27 [234a]
k(QléQZ) = P(Qz)/’TJ [22b] .
with
Based on these data, the development of the FID signal can be
calculated using Egs. [16] and [17], if the starting conditions i=1,2,...,Ny and k=1,2,...,N,,

are defined. Figure 1 shows a representative set of calculated

FIDs (only an initial section of each FID is shown) and spectig sych a way that angular steps> and A® between neigh-
resulting from am/2-pulse experiment. The average residenggying sites are always identical. The matrix for the corre
time 7; is varied between 50 and 2 ms while the equilibriungponding Markov process has an overall dimension dependi
populations are given b¥({,) = 0.6 andP({2;) = 0.4. on the site numben, andN,. Based on the idea of rotational
These parameters given, Egs. [22a] and [22b] allow the calG¥ffusion (13, 19, their element;i = Kioor andKyg =

lation of the rate constanks, o,y andK,—a,). The two jump ., ... must fulfill the equationsg, 6, 17
sites (), and(),, are assigned to two different Larmor frequen-

qes,w(&_ll)_ = w, — 100 1/5 andu(Q?) = wp + 100 1/s. The Koo + Koo = N2/(127%7) [24a]
time axis is segmented into 2000 time intervAlsof 0.5 ms
duration. With these data and the initial condition defined by Kigi+ niPic = KivninkPi+ 1k [24b]
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7 =200 us

0 0,15 03 045t(ms) | -150 75 0,0 75 v (kHz)

7=100 ps

0 0,15 03 045 t(ms)| -150 75 0,0 75 v (kHz)

T=50pus

0 015 03 045 t(ms)

T=20us

0 015 03 045 t(ms)| -150 75 00 75 v (kHz)

T=10pus

-0,2 + + . 0 4
0 0,15 03 045 t(ms) -15,0 75 0,0 75 v(kHz)

FIG. 3. Calculated free induction decays (left column) and corresponding spectral lineshapes (right column) for an isotropic rotational diffusioalatitnco
timesT = 7, = 7, between 10 and 20@s. Real parts of the free induction decays (black lines) are normalized to a starting intensity of 1; imaginary parts (gray
start at zero intensity. All spectra are hormalized to a standard overall area. The simulated experimental condition is represented by2gpuisiial he interaction
is assumed to be a chemical shift anisotropy with tensor elerSgfs,/S;; = 2 kHz/8 kHz/~10 kHz; more details are given in the text.

and All other matrix elements, except fKpa) i and Kina ko
which characterize the transfer between the first and the Iz
Kikken) + Kik-n = N&/(37%7)) [25a] sites in® according to Egs. [24a] and [24b], are zero. The
[25b] correlation timesr; and v, describe the reorientation around
axes parallel or vertical to the symmetry axis of the diffusior

The diagonal elements of the matrix are derived from tHgnsor, respectivelys( 13, 14. The anisotropy of the motion

requirements of a stationary process given by Eq. [4]: depends on the ratio of both values. For an isotropic motion,
and T, are identical.

Kikk = —Kig+okk — Kii—kk — Kk — Kik-n-  [26] Without an orienting potential, the equilibrium population

kiik(k+l)Pik = kii(k+1)kPi(k+1)-
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T=10 s 4
2 3
t ] t t
0,018 t (ms) | -350 75 175 v (kHz)
T=5us 1 4
08 -
06 |
04+ 2 -
02+
0 &
0,2 ‘ 0 4 ; :
0 0,006 0012 0018 t(ms) | -350 175 175 v (kHz)
T=2us 1
08 }
06 +
04 +
02}
0
02 , ; ‘ :
0 0006 0012 0018 t(ms) | -350 175 175 v (kHz)
T=1us 6
4 4
2 3
02 ; ‘ : 0 : ) J
0 0006 0012 0018t (ms)| -350 175 175 v (kHz)
T=0.5us 1 8
08 | 6
06 + |
04 4 4}
02+ )
0
0,2 + + + 0
0 0,006 0,012 0018 t (ms) | -350 -175 175 v (kHz)

FIG. 4. Calculated free induction decays (left column) and corresponding spectral lineshapes (right column) for an isotropic rotational diffusior
correlation timesr = 7, = 7 between 0.5 and 1f3s. Real parts of the free induction decays (black lines) are normalized to a starting intensity of 1; imagir
parts (gray lines) start and remain at zero intensity. All spectra are normalized to a standard overall area. The simulated experimental cepraitenté!
by an initial 7/2 pulse. The interaction is assumed to be a quadrupolar coupling represented by tensor €ef@pni€;; = 100 kHz/150 kHz/-250 kHz;
other parameters are identical to those for Fig. 3.

P; of any siteQ),, = (®;, ©,) with the Euler angl®, is given In the presence of an orienting potential of any kind, Eq. [27

by must be replaced by a suitable orientational distribution func
tion (6).
sin O, Finally, the Hamiltonian operatotd; corresponding to all
Pix =  Ne [27]  sites in® and ® must be calculated by two coordinate trans:
Ny O sin®, formations according to Fig. &) First, the HamiltoniarH"

k=1 is transformed from the magnetic tensor system (where i
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0,8+
0,6+
0,4 +
02+

-0,2

0 0,1 0,2 0,3 t (ms)

1
08+
06 + |
0,4 + |
i 012 ES
0
0,2 : ; :

i 4 A 4 A 4 03 t(ms) ‘

i1'£/’2-pulse n-pulse echo )

FIG. 5. Effect of an additionatr pulse on the development of a characteristic NMR signal (bottom) compared with the original free induction decay (
In the case shown, the pulse after a waiting period inverts the imaginary part of the free induction decay (bottom, gray line) while the real part initial
remains unaffected. This leads to the formation of a Hahn echo signal after another waiting\pdtiedexample shown refers to a slow= 100 ms) rotational
diffusion of the tensor given in Fig. 3.

off-diagonal matrix elements are zero) to the molecular diffunotion is approximated by a set of 99 discrete orientation:
sion tensor system using a set of fixed Euler anglesi( ), The correlation time- = 7, = 7, is varied between 10 and 200
which basically describes the orientation of the interactiqws. The FIDs are simulated over 2000 time intervals of 0s6-

tensor with respect to the rotation axis of the molecule. Suctdaration; their initial section is shown in Fig. 3. Together with
transformation is represented by an Euler rotation mat(ix, a corresponding spectrum, each FID is obtained within 15 s ¢

3, ¥) according to a personal computer.
Figure 4 refers to spectral results from a quadrupolar inte
HP = T(e, &, ) H"T (¢, 9, ). [28] action tensor as in the case of’d NMR experiment. The

corresponding quadrupolar coupling tensor is represented
A second transformation, based on the Euler an@leand®,, tensor element®,.,/Q,,/Q3s; = 100 kHz/150 kHz#250 kHz.
which describe the orientation of molecules in a $itg with  The correlation timer = 7, = 7 for the isotropic diffusive
respect to the magnetic field, leads from the diffusion tensmotion is varied between 0.5 and 1% and again approxi-

system to the laboratory system (Fig. 2): mated by 99 discrete orientations. Initial sections of the FID:
which have been developed in 2000 steps of 15 ns, are sho
Hy, = T(®;, O, OOHPT Y(d,, O, 0). [29] in Fig. 4 together with corresponding spectra.

In Fig. 5, the effect of an additionat pulse after a waiting

In the case of an isotropic motion, a defined rotation axis of tf#riod A is shown (bottom) in comparison to the original FID
molecule does not exist and the result becomes independé®). A very slow motion{ = 7, = 7, = 100 ms) is assumed to
from ¢, 9, andys (which therefore may be set to zero, as haguppress the effect of the reorientation for this example. Tk
been done for the following examples). experiment again starts with an initial2 pulse. After a duration

Figure 3 shows FIDs (left column: real part, black; imagid, the imaginary part of the NMR signal (gray line) is inverted by
nary part, gray) and spectra (right column) resulting from trgew pulse which is phase shifted by 90° with respect to ##i2
described algorithm. Again, they correspond to a simpl2-  pulse. The consequence of this event is the formation of a Hal
pulse experiment. In these cases,is identical tor;, charac- echo after another time peria (t = 0.2 ms in Fig. 5, bottom).
terizing the motion as an isotropic rotational diffusion. Th&xcept for its intensity, the following part of the FID is almost
frequenciesw({),) are derived from a chemical shift anisotidentical to the initial part after the/2 pulse.
ropy tensorS" with tensor elements,,/S,,/S;; = 2 kHz/8 Examples for FIDs and lineshapes resulting from a simt
kHz/—10 kHz by the transformation described above (with lated Hahn echo sequence in the presence of motion are p
=9 = ¢ = 0). With N, = 9 andN, = 11, the diffusive sented in Fig. 6. All parameters, except for the presence of tl
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FIG. 6. Calculated free induction decays (left column) and corresponding spectral lineshapes (right column) resulting from a simulated Hahi
experiment with pulse separatioAsvarying between 50 and 20@s. Lineshapes are obtained by Fourier transformation of the FIDs starting &A. The
dependence of the echo signal intensity (and the area of the corresponding spectrum) on the pulse spacing reflects the spin—spin relBxation time

second pulse, are identical to those for Fig. 3 at 280 The require fewer sites than slow ones. In the case of a diffusiv
delay between the two pulses is varied from 50 to 280The motion, the length of the time intervalt should be, as a rule
echo FID, beginning with the position of the theoretical echof thumb, at least an order of magnitude smaller than th
maximum (att = 2A), is submitted to Fourier transformationcorrelation time of the motion. In the case of extremely rapi
according to Eqg. [18]. The dependence of the echo sigmabrientations with correlation times neawd/ it is advisable
intensity (and the area of the corresponding spectrum) on tieeapply the Redfield approximation based on the describe
pulse spacing reflects the spin—spin relaxation tirpe(6). motional model 15). Finally, the overall number of sites in the
Parameters such as site numbers, length of the time intertahe regime should be sufficient to describe the complete dec
or the overall number of time intervals must be chosen accomf-the signal, otherwise artifacts like “wiggles” are observed i
ing to the given conditions. Generally, rapid diffusive motionthe spectral lineshape. In careful studies, all results should |
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